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Quantum Optics in Cavities and the 
Classical Limit of Quantum Mechanics 

Luiz Davidovich 

Instituto de Fisica, Universidade Federal do Rio de Janeiro 
Cz. P. 68528, 21945-970 Rio de Janeiro, Rio de Janeiro. Brazil 

A b s t r a c t .  These lectures review some basic techniques of quantum optics, related 
to the description of the quantized electromagnetic field in phase space and of the 
interaction between atoms and photons in cavities. The Wigner function is introduced. 
and some of the methods for measuring this distribution are reviewed. The combination 
of phase space methods with cavity QED techniques is shown to lead to experiments 
which are closely connected to fundamental problems regarding the classical limit of 
quantum mechanics and the quantum theory of measurement. 

I I N T R O D U C T I O N  

One of the most subtle problems in the physics of this century is the relation 
between the macroscopic world, described by classical physics, and the microscopic 
world, ruled by the laws of quantum physics. Among the several questions involved 
in the quantum-classical transition, one stands out in a striking way. As pointed 
out by Einstein in a letter to Max Born in 1954 [1], it concerns "the inexistence 
at the classical level of the majority of states allowed by quantum mechanics," 
namely coherent superpositions of classically distinct states. Indeed, while in the 
quantum world one frequently comes across coherent superpositions of states (like 
in Young's two-slit interference experiment, in which each photon is considered to 
be in a coherent superposition of two wave packets, centered around the classical 
paths which stem out of each slit), one does not see macroscopic objects in coherent 
superpositions of two distinct classical states, like a stone which could be at two 
places at the same time. There is an important difference between a state of this 
kind and one which would involve just a classical alternative: the existence of 
quantum coherence between the two localized states would allow in principle the 
realization of an interference experiment, complementary to the simple observation 
of the position of the stone. \ ~  know all this already from Young's experiment: the 
observation of the photon path (that is, a measurement which is able to distinguish 
through which slit the photon has passed) unavoidably destroys the interference 
fringes. 
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If one assumes that the usual rules of quantum dynamics are valid up to the 
macroscopic level, then the existence of quantum interference at the microscopic 
level necessarily implies that the same phenomenon should occur between distin- 
guishable macroscopic states. This was emphasized by Schr6dinger in his famous 
"cat paradox" [2]. An important role is played by this fact also in quantum mea- 
surement theory, as pointed out by Von Neumann [3]. Indeed, let us assume for 
instance that a microscopic two-level system (states I+) and I-))  interacts with a 
macroscopic measuring apparatus, in such a way that the pointer of the apparatus 
points to a different (and classically distinguishable!) position for each of the two 
states, that is, the interaction transforms the joint atom-apparatus initial state into 

I+)I 1") -~ I+) ' l /~ ), 

I-)l i") ~ I-)'1 \ ). 

The linearity of quantum mechanics implies that, if the quantum system is prepared 
in a coherent superposition of the two states, say I~p) = (1+) + I-})/v/22, the final 
state of the complete system should be a coherent superposition of two correlated 
states, each of which corresponding to a different position of the pointer: 

(I/v/-2)([ +) + I-))[ J') 

(z/, / f f)( l+) ' l  7 ) + I-)'1 \ )) = ) ' +  I ) '), (1) 

where in the last step it was assumed that the two-level system is incorporated into 
the measurement apparatus after their interaction (for instance, an atom which 
gets stuck to the detector). One gets, therefore, as a result of the interaction 
between the microscopic and the macroscopic system, a coherent superposition 
of two classically distinct states of the macroscopic apparatus. This is actually 
the situation in SchrSdinger's cat paradox: the cat can be viewed as a measuring 
apparatus of the state of a decaying atom, the state of life or death of the cat being 
equivalent to the two positions of the pointer. This would imply that one should 
be able in principle to get interference between the two states of the pointer: it is 
precisely the lack of evidence of such phenomena in the macroscopic world which 
motivated Einstein's concern. 

Faced with this problem, Von Neumann introduced through his collapse postu- 
late [3] two distinct types of evolution in quantum mechanics: the deterministic and 
unitary evolution associated to the SchrSdinger equation, which describes the estab- 
lishment of a correlation between states of the microscopic system being measured 
and distinguishable classical states (for instance, distinct positions of a pointer) 
of the macroscopic measurement apparatus; and the probabilistic and irreversible 
process associated with measurement, which transforms the correlated state into a 
statistical mixture. This separation of the whole process into two steps has been 
the object of much debate [4-6]; indeed, it would not only imply an intrinsic limita- 
tion of quantum mechanics to deal with classical objects, but it would also pose the 
problem of drawing the line between the microscopic and the macroscopic world. 



Several possibilities have been explored as solutions to this paradox, including 
the proposal that  a small non-linear term in the SchrSdinger equation, although 
unnoticeable for microscopic phenomena, could eliminate the coherence between 
macroscopic states, thus transforming the quantum superpositions into statistical 
mixtures [4]. The non-observability of the coherence between the two positions 
of the pointer has been at tr ibuted both to the lack of non-local observables with 
matrix elements between the two corresponding states [7] as well as to the fast 
decoherence due to dissipation [8-10]. This last approach has been emphasized in 
recent years: decoherence follows from the irreversible coupling of the observed sys- 
tem to a reservoir [8,9]. In this process, the quantum superposition is turned into a 
statistical mixture, for which all the information oil the system can be described in 
classical terms, so our usual perception of the world is recovered. Furthermore, for 
macroscopic superpositions quantum coherence decays much faster than the phys- 
ical observables of the system, its decay time being given by the dissipation time 
divided by a dimensionless number measuring the "separation" between the two 
parts. The s tatement  that  these two parts are macroscopically separated implies 
that this separation is an extremely large number. Such is the case for biological 
systems like "cats" made of huge number of molecules. In the simple case men- 
tioned by Einstein [1], of a particle split into two spatially separated wave packets 
by a distance d, the dimensionless measure of the separation is (d/,~dB) 2, where kdB 
is the particle de Broglie wavelength. For a particle with mass equal to 1 g at a 
temperature of 300 K, and d = 1 cm, this number is about  1040, and the decoher- 
ence is for all purposes instantaneous. This would provide an answer to Einstein's 
concern: decoherence of macroscopic states would be too fast to be observed. 

In these lectures, it will be shown that the study of tile interaction between atoms 
and electromagnetic fields in cavities can help us understand some aspects of this 
problem. In fact, many recent contributions in the field of quantum optics have led 
not only to the investigation of the subtle frontier between the quantum and the 
classical world, but also of hitherto unsuspected quantum mechanical processes like 
teleportation. Research on quantum optics is therefore intimately entangled with 
fundamental problems of quantum mechanics. 

The whole area of "cavity quantum electrodynamics" is a very recent one. It 
concerns the interactions between atoms and discrete modes of the electromagnetic 
field in a cavity, under conditions such that losses due to dissipation and atomic 
spontaneous emission are very small. Usually, one deals with atomic beams crossing 
cavities with a high quality factor Q (defined as the product  of the angular frequency 
of the mode and its lifetime, Q = ccr). The atoms, prepared in special states and 
detected after interacting with the field, serve two purposes: they are used to 
manipulate the field in the cavity, so as to produce the desired states, and also to 
measure the field. 

Several factors contributed to the development of this area. The production of 
superconducting Niobium cavities, with extremely high quality factors, up to the 
order of 101°, allows one to keel) a photon in the cavity for a time of the order of one 
second. New techniques of atonfic excitation (alkaline atoms, like Rubidium and 



Cesium, are fi'equently used for this purpose) to highly excited levels (principal 
quantum numbers of the order of 50), and with maximum angular momentum 
(g = n - 1) - the so-called planetary Rydberg atoms - have led to the production 
of atomic beams that interact strongly even with very weak fields, of the order of 
one photon, due to the large magnitude of the relevant electric dipoles. Besides, 
the lifetime of these states is large - of the order of the millisecond - which may 
be understood semiclassically, from the correspondence principle (which should 
be valid for n ~ 50): the electron is always very far away from the nucleus, and 
therefore its acceleration is small, implying weak radiation and a long lifetime. One 
should also mention the new techniques of atomic velocity control, which allow the 
production of approximately monokinetic atomic beams, leading to a precise control 
of the interaction time between atom and field. For a review of some of the main 
problems and results in this field, see Ref. [11]. 

Looking into the problem of the classical limit of quantum mechanics will ac- 
tually provide us with a useful thread, a "leitmotif" which will lead us to many 
important techniques of quantum optics. We start therefore with a review of the 
basic ingredients of quantum optics. 

II THE Q U A N T I Z E D  E L E C T R O M A G N E T I C  FIELD 

The free-field Hamiltonian for a mode of the electromagnetic field is given by the 
harmonic oscillator expression 

(2) 

where N = ~tfi is the number operator, and ~ and a t satisfy the commutation 
relation 

[fi, a*] = 1. (3) 

The eigenstates of /2/are denoted by In), and satisfy the equation 

NIn) = nln),  (4) 

while the eigenenergies are given by E~ = (n + J/2)hw. It is easy to show that  

&*In) = x/-nT 1In + 1), a l n )  = x/nln - 1). (5) 

The eigenvalue n of the number operator N is interpreted as the number of photons 
in the field, while, in view of (5), ~ and/z t are the photon annihilation and creation 
operators. 

The states In) are the so-called Foek states, and have a well-defined number of 
photons. The state corresponding to n = 0 is the vacuum state. It is easy to show 
from the above relations that  

gtt n 
0/. 



The electric field is expressed in terms of the annihilation and creation operators 
by 

(6) 

where u ( ~  is a function which describes the spatial dependence of the field mode, 

gis the polarization vector, and Ew = h ~ / V  is the field per" photon. Here 1" = 
f lu(~V)12dSr is the effective volume of the mode, defined so that  the expectation 

value of the electromagnetic energy in the vacuum state, (1/4rr)f(0J[/~(~')]'~10)dar, 
is equal to the zero-point energy hcz/2. One should note that (nlfTIn) = 0, that  is, 
the average electric field is zero in a [Cock state. 

A special role will be played in the following by the phase displacement operator: 

9 ( 0 )  = e x p ( - i o : %  . (7) 

It follows from the commutation relations that  

(-~(0)ar)(0) = a e.~p(-i0). (s) 

For 0 = a:t, the phase displacement operator coincides, up to a factor exp(-i~zt/2) 
coming from the zero-point energy, with the evolution operator corresponding to 
the Hamiltonian (2); and (8) yields the time evolution of the Heisenberg operator 
associated with a. 

II.A Quadratures of the electromagnetic field 

The quadratures of the electromagnetic field correspond to the position and mo- 
mentum of a harmonic oscillator: 

1 p =  i 
0 = _ = i .  ( 9 )  

This commutation relation implies the Heisenberg inequality AqAp > 1/2. 
From (8) and (9), we see that,  for 0 = ~r, 

t>(~)0t?(~) = - 0 ,  ~rt(~)p0(~) = - ~ ,  

so that  D'(Tr) is the parity operator. 
Setting u (~  = ]'u(r-)j exp[-i¢(r')] in Eq. (6), we have, in the Heisenberg picture, 

for the electric field operator in terms of these quadratures (for a real polarization 
vector): 

£(r ,  t) = E~ tu(r-) Iv/2[~ cos(u:t + ,¢) - ;5 sin(at + ¢)] ~'. 

This expression is analogous to the one which yields the position of a harmonic 
oscillator at time t in terms of its initial position and momentum: 



x( t )  -- :~(to) c o s ~ ( t  - to) + p(to) sin ~ ( t  - to).  (10) 
m ~ d  

The quadrature eigenstates (which correspond to states with well-defined position 
and momentum for the harmonic oscillator) will be denoted by 

OIq> = qlq>, /31p> = ;Ip>. 

As for the position and momentum eigenstates, these states provide two non- 
normalizable bases. The corresponding quadrature wave functions are given by 

~(q) = <ql~>, ~(P) = <P[@. 

Using the phase displacement operator given by (7), it is possible to define gen- 
eralized quadratures: 

q0 = 5 ~ (0)~ 5(0) = (1/v~) (~e -~ + ~ei°) -- 0 cos 0 +/5 sin 0, (11) 

/30 -=/)t (0)/3 5(0) -- - q  sin O +/5 cos O. (12) 

It is clear from these expressions that U(0) is the rotation operator in phase space. 
For a harmonic oscillator, and with 0 = wt, (11) and (12) correspond respectively 
to the position and the momentum of the oscillator at time t, expressed in terms 
of the position 0 and momentum t3 at time t = 0. 

I I . B  C o h e r e n t  s t a t e s  

An important role is played in quantum optics, and also in the understanding 
of the classical limit of quantum mechanics, by the coherent states, defined as 
eigenstates of the annihilation operator [12]: 

~[a} = ala}. (13) 

From this definition, it is easy to show that the average number of photons in a 
coherent state Io~} is given by 

<n> = <~ta*aJ~> = f~l 2, 

while the average value of the electric field coincides with the classical expression 
for an electromagnetic field with complex amplitude ~: 

<~<)> = ~ ( ~ ) ~  + c.c.. 

It also follows from the definition (13) and the commutation relations that, for 
a coherent state, 

~ q  = ~ p  = 1 / v ~ ,  



P 
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FIGURE 1. Pictorial representation of a coherent state in phase space. 

or, more generally, Aqe = 1/2. Therefore, coherent states are minimum uncertainty 
states. This property can be pictorially depicted by drawing in phase space a circle, 
with a radius equal to the uncertainty in Aq or ~p,  as shown in Fig. 1 

tn terms of Fock states.coherent states can be expressed in the following ww: 

l a} = ¢ :-1'~1~/2 

corresponding to the photon number distribution 

p(~) --I <,~ i ~> I ~= exp(- I a I~) l ~ I~" <7~>" (15) n! - exp(-(r~)) n! 

This is a Poisson distribution, with the variance ('__X.n) 2 = (n). 
The displacement operator is defined by 

D(ct. c~*) : exp (ad t - o>/z) . (16) 

Note that  the right-hand side of (14) implies that  

(17) 

where in the last step the Baker-Hausdorff transformation has been used to entangle 
the annihilation and creation operators in the exponent. Therefore, a coherent state 
la} can be obtained by applying the displacement operator D(a,  a*) to the vacuum 
state. The displacement operator is closely connected to the evolution operator 
corresponding to the interaction of the electromagnetic field with a classical current. 
Indeed, this interaction is described by the Hamiltonian 

Hi,,, = . / Y .  5d37" , 



which can be written in the form Hin  t = i (aht  - a*6). The evolution operator 
corresponding to this interaction coincides, up to a phase, with D(a ,  a*). Therefore, 
Eq. (17) implies that  classical currents generate coherent states from the vacuum. 

From the expansion of the coherent states in terms of the Fock states, one easily 
derives the following orthonormality and completeness relations: 

I Is'> 12=- e , 

7 I= z ,  

where dUa - d(~ece)d(~ma). 
In terms of the quadrature eigenstates Iq}, one may write: 

(qlao) = (1/7c)l/4e-iq°P°/2eip°qe-(q-q°)2/2, 

with ao = (qo + ipo)/v/'~. 
Therefore, the probability of finding a quadrature 0 of the field with a value q, 

for a coherent state lao}, is given by a Gaussian (for the vacuum, qo = Po = 0): 

P(q) = (1/7c) U2 exp[-(q - q0)2]. 

II.C Squeezed states 

The most general family of minimum uncertainty states, as shown by Pauli [13], 
corresponds to the following wave function in the q-quadrature representation: 

~b(q) = (q[¢) = (2rc~'q) -1/4 exp(ipoq) exp \ 4A2q ] "  

The variance A2q is not necessarily equal to 1/2, as it is for coherent states. In the 
q0-representation, one would get the same expression for O(qe), with q, q0, P0, and 
A2q replaced by qe, qeo, Peo = qe+,~/2,o, and A2qe, respectively. If A2qe < 1/2 for 
some region of values of 0, we say that  the state is squeezed. 

It is clear that this family of minimum uncertainty squeezed states can be ob- 
tained from coherent states through a scale transformation, which compresses say 
the q-axis and at the same time dilates the p-axis. Thus, the wave function of the 
squeezed vacuum would be obtained from the one corresponding to a coherent state 
by the scale transformation [14]: 

where 
= (1 / - ) ' / 4e  - e / '  . 

Differentiating Oo(q, () = (qlOo(()> with respect to ~, one gets: 
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O O 1 OOo 
~-(ql¢o(~)) = ~ o ( q , ~ )  = ~ o  + q Oq 

i ~ ^  

= ~(ql(qP +/?0)t00(~)). 

Therefore, 

and 

-2 q~qq+Oqqq ~b0 

c~ i . . . .  1 
0-~t00(~)) = ~(qP +Pq)l¢0(~))= ~ (~2  at2)100(~)), 

(18) 

where 5 ' ( ( ) = e x p  [ ( f / 2 ) @ 2 -  fit2)] is the sq~Leezin 9 operator. 
More generally, one could set ~ = re i°, implying a combination of squeezing and 

rotation, which would correspond to compressing the quadrature qo/2 and dilating 
the quadrature qo/~+,/o_. 

A more general family of minimum uncertainty squeezed states is obtained by 
displacing the squeezed vacuum, with tile displacement operators introduced before: 

I", ~} = b(~)S(~)]0) .  (19) 

An equivalent result is obtained by applying the squeezing transformation to the 
coherent state la). 

One should note that the squeezing operator can be interpreted as the evolution 
operator corresponding to tile Hamiltonian 

Hin t o( a2 _ a t 2 .  

Hamiltonians of this form occur in non-linear optics, where they describe degenerate 
parametric amplifiers. A realization of such an amplifier is provided by a KTP 
crystal (potassium titanium phosphate) pumped by a laser with frequency twice as 
large as the mode of interest. 

The average number of photons in a squeezed state can be immediately obtained 
from (19): 

(~, ~latalc~, ~) = ]ozl 2 + sinh 2 r .  

This equation shows that the average number of photons in the squeezed vacuum 
is different from zero: energy is required to squeeze the vacuum! 

II.D Measurement of quadratures 

Several methods have been proposed to measure quadratures of the electromag- 
netic field (for a review, see for instance Ref. [15]). The general idea consists in 
mixing the signal to be detected with an intense coherent signal, called local oscil- 
lator, before detection [16]. 

11 
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Ea ~ Ed 
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Ic-I d 
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FIGURE 2. Method of balanced homodyne detection 

The discussion here is restricted to the method of balanced homodyne detection, 
sketched in Fig. 2. The field to be measured (complex amplitude Ea) is sent on 
a beam splitter, together with a coherent field (complex amplitude Eb) with the 
same frequency. One measures then the difference of intensity of the two beams 
emerging from the beam splitter (complex amplitudes Ec and Ed). The detection 
is said to be balanced when the mirror transmits 50% of the incident light. 

Let r and t be the reflection and transmission coefficients of the mirror, respec- 
tively. Let us set: 

E~ = tea  - tEb, (20a) 

Ed = tea + f e b ,  (20b) 

or yet, in matrix form, 

Energy conservation (assuming that losses are negligible) implies that  

LEcl 2 + IEal > = IEal 2 + IEbl 2 . (22) 

From (21) and (22), one gets: 

It[ 2 + ItL 2 = 1 ,  (23a) 

r * t  - r t *  = 0. (23b) 

12 



If one takes r real and equal to v ~  (one should note that phases in r and t can 
be removed by redefining the phases of the incoming and outgoing fields), it follows 
from (23) that t = i ( 1  - ~7) 1/2. Choosing the positive sign, one gets then 

(E~ - , / i  - 

Normalizing the intensity to the photon number, and introducing the annihilation 
operators through 

s~ -+ a, Eb-+b, 
E c - + h  Ed ---> d, 

one gets, from (24), 

= ~ , -  ~ - , l b ,  d = ~/1 - ,~ + ~ .  (2s) 

For balanced detection, 7/= 1/2, so that 

= ~ ( a -  b), d = (a + ~,). (26) 

Note that conditions (23) imply that the transformation between the field oper- 
ators corresponding to (21) is unitary (this is the requirement ibr operators which 
corresponds to energy conservation for the classical fields). 

The difference between the intensities of the fields Ed and E~ is given then by 

I = d ' d -  ab  = atb + bta. (27) 

Assuming that the field Eb may be described classically (this would be the case 
for a coherent state with large average photon number), one replaces b by /3 = 
B e -i(c°t-O), SO that (27) gets transformed into 

I = v [a~  ~'-°, + a'~-'('~-°)].  (2s) 

Since 5 =/to e-i~t (all fields are taken in the Heisenberg picture), one gets finally, 

I : s (~0e -~° + a; ~ 0 ) .  (29) 

This equation shows that the difference of intensities, measured b}" the method of 
homodyne detection, is directly proportional to the quadrature X(O) of the field 
Ea, defined by 

X(0) = ~ 1  (ao _,0 + a;~,0) . (a0) 

13 



Therefore, by detecting the difference of intensities, as the phase of the local oscil- 
lator Eb is changed, one may measure an arbitrary quadrature of the field E~. In 
actual experiments, the phase of the local oscillator is adjusted to yield the maxi- 
mum possible quadrature squeezing. The shot-noise level is determined by blocking 
the signal field, so that only the local oscillator field reaches the detector. The re- 
sults of the measurements are spectrally analyzed, leading to the determination of 
the amount of squeezing as a function of the frequency. In practice, one deals with 
a continuum of modes, and the above analysis applies to the situation when the 
frequency window of the detector is much smaller than the linewidth of the light 
which is being measured. 

III R E P R E S E N T A T I O N S  IN P H A S E  SPACE 

III.A The density operator 

We present in this section a brief' review of the concept of density operator. For 
a pure state I¢), the density operator is defined by 

If instead one is uncertain about the state of the system, and we know that there 
is a probability Pe for the system to be in state I@, the density operator is defined 
by 

(31) 
¢ 

The utility of the above definitions can be grasped by writing down, in terms of 
t5, the average value of an observable A: 

(.4) = ~ P~0(¢1.41@ = Tr(ISA), (32) 

which represents a unified way of expressing the average value, valid both for a 
pure state and a statistical mixture. 

From the definition it follows immediately that Trt5 = ~ PC = 1. 
Also, it is easy to see that t? is Hermitian, and therefore can be diagonalized. If 

j¢i) are the eigenstates of t5, then 

i 

which implies that 

~2= ~ P~I¢,)(O~I =~ Trp 2 =  ~ P~ ~ 1. 
i i 

14 



For a pure state, Tr (~2) = 1, while for a mixture Tr (/5 2) < 1. 
In terms of the Fock basis, 

~lTr t  

Finally, let us recall that if one has two systems (interacting or not), let us 
say an atom and an electromagnetic field, a basis for tile combined system can 
be obtained by forming the tensor product of the bases corresponding to each of 
the two systems. The tensor product of two states [%0 and [¢F} corresponding 
respectively to tile systems A and F is written as 

corresponding to the density operator 

The average of expressions involving products of operators acting on .4 and on F 
separately can be written as 

(.iF} =- Tr(pa.4)Tr(f3Ff" ) . 

Of course, a general state of the combined system will not have the form of a tensor 
product,  but  can be expressed as a linear combination of tensor product  states. A 
state which cannot be factorized is called an entangled state. 

States may also be represented by phase space distributions, which allow 
quantum-mechanical averages of operators to be expressed as classical-like inte- 
grations over phase space of c-numbers corresponding to the operators. In these 
lectures, we will pay special attention to the Wigner distribution. 

III.B The Wigner distribution 

Phase space probability distributions are very useful in classical statistical 
physics. Averages of relevant functions of the positions and momenta of the parti- 
cles can be obtained by integrating these functions with those probability weights. 

In quantum mechanics, similar averages are calculated through Eq. (32). Heisen- 
berg's inequality forbids the existence in phase space of bona fide probability distri- 
butions, since one cannot determine simultaneously the position and the momen- 
tum of a particle. In spite of this, phase space distributions may still play" a useful 
role in quantum mechanics, allowing the calculation of the average of operator- 
valued functions of the position and momentum operators as classical-like integrals 
of c-number functions. These functions are associated to those operators through 
correspondence rules, which depend oil a previously defined operator  ordering. 

From all phase space representations, the Wigner distribution is the more natural 
one, when one looks for a quantum-mechanical analog of a classical probability 

15 



distribution in phase space. This is a consequence of a beautiful result demonstrated 
by Bertrand and Bertrand [17], which will be presented here. The following account 
stays close to the ones in Refs. [14] and [17]. 

Let us look for a representation for which the marginal distributions coincide 
with the quadrature probability distributions: 

/ dp W(q, p) = <qlPlq>, f dqlJV(q, P) : <PIPlP>. (33) 

One should note that,  for a pure state, (qlf)lq} = t'~(q)[ 2, <plplp) = I@(p)l ~. One 
should also note that  from (33) it follows immediately the normalization property: 

f dpdq W(q, p) = 1. (34) 

Properties (33) must remain true if one rotates the axes in phase space, so that  

q0 = ut(0)0 f)(0) = 0cos0 +/5s in0,  

/5o = Ut(0)/5 ~)(0) = - q  sin 0 +/5 cos 0, 

(35) 
(36) 

or, inversely, 

(} = ~]o cos 0 - :5o sin 0, 

t5 = q0 sin 0 +/50 cos 0. 

(37) 

(38) 

Thus: 

P(qo) = f H/(qo cos 0 - Po sin 0, qo sin 0 + Po cos O)dpo, (39) 

where now 

P(qo) = <qlU(0)P Ut(0) lq). (40) 

Expression (39), which yields the probability distribution for qo in terms of the 
function W(q,p), is called a Radon transform. It was investigated in 1917 by 
the mathematician Johan Radon [18], who showed that,  if one knows P(qo) for 
all angles 0, then one can uniquely recover W(q,p), through the so-called Radon 
inverse transform. If one now identifies P(qo), given by the Radon transform (39), 
with the quantum expression (40), then it follows that  (39) and (40) uniquely 
determine the function W(q, p), in terms of the density operator ~ of the system. 
The function W(q,p) is in this case precisely the Wigner function of the system. 

Before demonstrating this result, let us note that  Radon's result is the mathe- 
matical basis of tomography. In fact, application of this procedure to medicine (see 
Fig. 3) has brought the Nobel prize in Medicine to the medical doctors Cormack 
and Hounsfield in 1979. 
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FIGURE 3. Medical tomography. Measurement of the X-ray absorption for all angles along a 
plane allows one to reconstruct the absorptive part of the refraction index for a slice of the organ 
under investigation. 

III.C Reconstruction of the Wigner function 

It  is shown now that  the distribution W(q,p) may be uniquely determined ii'om 
the knowledge of P(qo). For this end, let us introduce the characteristic function 
corresponding t.o It'(q, t))- which is just the Fourier t ransform of this distribution: 

I I ' ( ' t av)  = f / W ( q , p ) e x p ( - i u q -  ivp) dqdp. (41) 

The characteristic function corresponding to P(qo) is introduced in a similar way: 

O) = f P(qo) exp(-i(qo) dqo. (42) f)((, 

Inserting in (42) the expression for P(qo) as a function of W, given by (39), one 
gets: 

~((,0) = f /W(q,p)exp(-i~qo)dqodpo, 

where q = qo cos 0 - Po sin 0 and p = qo sin 0 + Po cos 0, and therefore qo = q cos 0 + 
p sin 0. 

Changing the integration variables in/5((, 0), so that  (qo,Po) --9 (q,P), one gets: 

/5(~, 0) = W(q, p) exp [ - i ( (q  cos 0 + p sin O)]dq dp. (43) 
2x5 OC 

Therefore,/~((, 0) is tile Fourier transform of W(q,p)  in polar coordinates: 

/~((, 0) = I ' l ' ( (  cos 0, ( sin 0). 

This implies that ,  from P(qo). one can calculate 15((, 0), and from this function one 
can calculate W(q, p). 
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This demonstrates the tomographic reconstruction of W(q,p). In order to con- 
nect this distribution to the density operator of the system, one uses Eq. (40): 

~(~,0) = (qol~lqo)c-iCq°dqo = [qo}dqo = Tr fie -i¢O° . 
o o  

(44) 

But ~00 = 0~ cos 0 + i5~ sin 0. Therefore, setting u = (cos 0, v = { sin 0, one gets 

Another form for the W(q,p) can be obtained in the following way. We rewrite 
the characteristic flmction W(u,  v) as: 

lA'(u, v) /~oo . . . .  f (ql~e-i'OIq + v)dq = (ql~e-~q-*VP[q} dq = e iuv/2 +oo 
o o  o o  

= x- lplz+ &,  
o o  

(45) 

where we have used that 

exp(-iuO - ivy) = exp( - iuv /2 )  exp(-iuO) exp( - i@)  

and we have set q = x - v/2. Taking the Fourier transform of gV(u, v) given by 
(45), one gets the following expression for the distribution W(q, p): 

W ( q , ; )  = q - t•l q + & ,  (46) 

which, except tor a normalization constant, is the famous expression written down 
by Wigner [19] in his article "On the Quantum Correction for Thermodynamic 
Equilibrium", published in 1932. Wigner used this quasi-probability distribution 
in phase space as a convenient way of calculating quantum corrections to classical 
statistical mechanics. He wrote in his paper that  (46) "was chosen from all possible 
expressions, because it seems to be the simplest." He added a quite intriguing 
footnote: "This expression was found by L. Szilard and the author some years ago 
for another purpose." One has shown here that  the Wigner distribution has in fact 
a quite distinctive feature: it is the only distribution in phase space which yields 
the correct marginal distributions for any quadrature! 

The tomographic procedure has a simple interpretation for a harmonic oscillator. 
From (10), it is clear that  in this case measuring the quadratures for all angles is 
equivalent to measuring the position of the harmonic oscillator for all times fi'om 0 
to 2rr/co. This implies that  the measurement of [~O(x, t)] 2 for 0 < t < 27r/aa allows 
one to reconstruct the state ¢(x,  t) of the harmonic oscillator. 

The question about what is the minimum set of measurements needed to recon- 
struct the state of a system is actually a very old problem in quantum mechanics. 
In his article on quantum mechanics in the Handbuch der Physik in 1933 [13], Pauli 
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stated that "the mathematical problem, as to whether for given functions IV(z) 
and I7F(p) [probability distributions in position and momentum space], the wave 
function ~', if such a function exists, is always uniquely determined has still not 
been investigated in all its generality." One knows now the answer to this ques- 
tion: tile probability distributions l'l'(z) and ~7F(p) do not form a complete set in 
the tomographic sense, and therefore are not sufficient to determine uniquely the 
quantum state of the system. 

I I I . D  Express ion  of  the  W igner  funct ion  in t erms  of  it and 
at 

Setting 

1 (5 + h t) I) : i 1 0 :  ~_) , ~ ( g ~ t - g ) '  A :  ~ ( t L + i t , ) .  (47) 

one gets 

I,TI'(A, A *) = Tr (/Se-ix'a-iaat) . (48) 

The Fourier transform of this expression yields the Wigner function, expressed 
in terms of 8 and at: 

1 / d 2  A e~X._~.xl~7 (A. A*) ~" (o~ o / )  = 7 ' (49) 

As shown by Cahill and Glauber [20], this expression may be written in the 
following way: 

(5o) 

where/)(a ,  a*) = exp(c~g t -~*h)  is the displacement operator. Since exp(irrata) is 
the parity operator, this expression shows that the Wigner function is proportional 
to the average of the displaced parity operator. 

The Wigner function given by (50) involves actually a different normalization 
with respect to the one defined before: one must set I1" --+ 2roW, so that 

J(~l~/.~) ~,~.(~, ~*) = 1. (51) 
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III.E Properties of the Wigner distribution 

Thorough discussions of properties of the Wigner distribution can be found in 
Refs. [14] and [21]. Here only some of them are summarized. 

It is easy to show that  the Wigner function is real and bounded. If one adopts 
the normalization of (46), so that  (34) holds, then Schwarz's inequality implies that 
IW(q,p)l < 1/7r. If the Cahill-Glauber normalization (50) is adopted instead, so 
that  (51) is satisfied, one has IW(o~, c~*)l _< 2. 

Furthermore, let W~(q,p) be the Wigner function corresponding to the state 
~(q), and Wc(q,p) the Wigner function corresponding to the state ¢(q), as given 
by (46). Then, 

f dq~*(q)O(q)2=27r/ dq f dptl%I4%. 

This relation has several consequences. First, setting ¢(q) = ¢(q), one gets 
f dq f dp [[l/'(q, p)]2 = 1/27r. More generally, it is easy to show that  

/ / , 

and therefore f J'dqdp[W(q,p)] 2 < 1/27r for a statistical mixture. It is also clear 
that  

f dq f dp W~I'V4) = 0 if (¢10) = 0, (53) 

which implies that  W cannot be always positive. This may be thought as a con- 
sequence of the Heisenberg inequalities: since it is not possible to measure simul- 
taneously q and p, one cannot have in quantum mechanics bona fide probability 
distributions in phase space. In fact, one can show that  the only pure states leading 
to positive-definite Wigner functions correspond to Gaussian wave functions [22]. 
This is the case for coherent states, and also for squeezed states. 

One should note that  the Husimi distribution, often found in the literature, and 
defined by Q(a, a*) = (a[~[a)/Tr, is always positive, but does not lead to the correct 
marginal distributions. 

III.F Averages of operators 

As shown by Moyal in 1949 [23], the Wigner distribution can be used to calculate 
averages of symmetric operator functions of q and p, as classical-like integrals in 
phase space. Thus, for instance, 

Tr([~{O2D}~im) = Tr[b(O2fi+O~(l+7)~12) /3] = / dqdpW(qp)q2p. (54) 

The association of a symmetrized quantum operator to a classical function is 
called Weyl correspondence. 
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This property of the Wigner function can be shown by considering the two equiv- 
alent expressions for the characteristic function ll '(u, v), 

= f / ll'(q,p)exp(-iuq -ivp)dqdp, lI '(u. U) 

from which one gets 

Tr [t5(;~ 0 + @)~] = 'ik~s il~Ok - '(~#'  ~ )  ~=0 = f+~°~ W(q,p)(#q + ~,p)kdqdp. (55) 

Comparing powers of p. and ~. one gets 

S Tr (t 5 {(y'~i 5~ }sire) = W (q. p)q'~p'~ dq alp. 
O 0  

Of course, the same property holds for the Wigner function expressed in terms 
of (~ and fit Thus. for instance~ 

+ d~a)/2] = f(d2~/~) ~a'*W(~, o.*). (56) Tr[p(da t 

Other distributions in phase space can be introduced, which allow writing as 
classical-like integrals averages of functions of the operators ~ and d t written in 
normal and anti-normal order. Thus, for instance, the Husimi distribution can be 
shown to correspond to operators in anti-normal order. These distributions will 
not be discussed here [24]. 

III.G Examples  of Wigner  functions 

Wigner functions corresponding to special states of the electromagnetic field can 
be obtained from either (46) or (50). We adopt in this section the normalization 
corresponding to (46). 

For the vacuum state, one has the Gaussian 

Uo(q, ;) = le-q2-p2. (57) 
7]- 

The Wigner function for a coherent state can be easily obtained by applying a 
displacement to the above Gaussian: 

ll~(q, p) lc-(q-q°)~-(P-P°F. (58) 
7i" 

Application of a scaling transformation to (57) yields tile Wigner function for a 
squeezed vacuum, plotted in Fig. 4(a): 

21 



(a) O) 

(c) (d) 

2 * 1 0 2 1  

F I G U R E  4. Examples of Wigner distributions. (a) Squeezed state; (b) Fock state with n = 3; 
(c) Superposition of two coherent states, [~} o¢ lao} +1 - ao}, with ao = 3; (d) Statistical mixture 
(lao}(C~ol + I - °o)/-aot)/2,  also with c~o = 3. 

V~)(q,p) = ;1 exp ( - e2 (q  2 - e-2(p 2) . (59) 

For a one-photon  Fock s ta te  I1}, one gets: 

H q ( q , p )  = 1e-q2-P2(2q2 + 2p 2 - 1). (60) 
7"C 

This  funct ion vanishes for v ~  + p2 = 1 / v ~ ,  and is negative at  the  origin of phase 
space. This  negative value reminds us of the highly non-classical na tu re  of a Fock 
state. For higher photon  numbers,  the Wigner  funct ion displays more  oscillations, 
the number  of zeros coinciding with n. Fig. 4(b) displays the Wigner  function 
corresponding to a Fock s ta te  with n = 3. 

Of special interest for our discussion on the classical limit of quan tum mechanics 
is the state  formed by super imposing two coherent  s ta tes  ]a0) and I - c~0} (setting 
s0 = q0 real for simplicity): 

Ix,> = x[ l~0> + I - ~0>], (61) 

where N" is a normal izat ion constant ,  given by 

= [: ( 1 .  . (62) 
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The corresponding wave function in configuration space is given by 

while the Wigner flmction is 

IV(q,p) = (A//Tc) [e -(q-q°)~-p2 + e -(q+q°12-p2 + 2e -q2 p'- cos(2pq0)] . (63) 

This function is displayed in Fig. 4(c). 
It is interesting to compare this Wigner function with the one corresponding to 

a statistical mixture of the same coherent states, with equal weights: 

l (64) 

for which 

l'I'(q,p) = (1/27r)[e-(q-q°)~-P~+ c -(q+q°)'--/] . (65) 

This function is displayed in Fig. 4(d). 
While (65) is just the sum of two Gaussians, corresponding to the coherent states 

la0} and l -  c~0) respectively, (63) displays interference fringes around the origin 
of phase space, which is a clear signature of the coherence between the two states 
la0} and I - c~0} in (61). Therefore, the measurement of the Wigner function of the 
electromagnetic field would be a clear-cut way of distinguishing between a coherent 
superposition and a mixture of the two coherent states. It will be seen shortly 
that these two coherent states may be interpreted, within the framework of recent 
experiments in cavity QED, as pointers of a measuring apparatus. The mechanism 
by which a state like (61) loses its coherence, approaching state (64), is thus very 
relevant for the quantum theory of measurement. 

III .H M e a s u r e m e n t  of  the  W i g n e r  funct ion  

The inverse Radon transform suggests that tile Wigner function of an electro- 
magnetic field can be reconstructed by determining P(qo) through homodyne de- 
tection [25]. This has actually been achieved in 1993 by Smithey et al. [26]. In 
view of the low detection efficiency in those experiments, the detected distribu- 
tion was actually a smoothed version of the Wigner function, closely related to 
the Husimi distribution. A much better result was achieved by Mlynek's group in 
1995 [27], clearly displaying a highly compressed Gaussian, corresponding to the 
experimentally obtained Wigner function of a squeezed state of light emerging from 
an optical parametric oscillator. A procedure closely related to the homodyne de- 
tection method was used to reconstruct the vibrational state of a molecule by T. 
J. Dunn et al. [28] 

The Wigner flmction can also be obtained by measuring the populations of dis- 
placed states. Indeed, flora (50), one has: 
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?l 

= • ( 6 6 )  

n 

If /5 corresponds to a mode of the electromagnetic field in a cavity, then 
/)-l(c~,c~*)t?/5((~,o~*) can be ob ta ined  f rom t5 by inject ing a coherent  s t a te  into 
the cavity, th rough  for ins tance  the  coupling of the  cavi ty  wi th  a microwave gen- 
e ra to r  (if the frequency of the mode  in the cavi ty  is in the microwave range).  One 
mus t  measure  then  the popula t ion  of the displaced states,  which can be done for 
ins tance  by app ly ing  the procedure  described in Ref. [30]. 

This  m e t h o d  was used by Wine land ' s  group a t  NIST  to measure  the  Wigner  
funct ion of v ib ra t iona l  s ta tes  of a t r apped  ion [29]_ The  relevant  level scheme is 
shown in Fig. 5. Sta tes  I $ ) and II" ) correspond to two me ta s t ab l e  g round-s t a t e  
hyperf ine sublevels (2S~/2, with F = 2, m F  = --2 and F = 1, m F  = --1, respec-  
t ively),  s epa ra ted  by hCOHF. The  ion is t r a p p e d  in a harmonic  potent ia l ,  and the 
v ib ra t iona l  levels associa ted with  each electronic s t a te  I $) and I $) are also sketched 
in Fig. 5. Initially,  the  ion is in the internal  s ta te  I $ ). The  d isp lacement  of the  vi- 
b ra t iona l  s ta te  in phase  space is ob ta ined  by inducing a R a m a n  t rans i t ion  between 

o IA 

A B 

o,)I 

b i 

D 

it> 

F I G U R E  5. Measurement of the Wigner function for a trapped ion, by Leibfried et al. [29] 
Displacement of the vibrational state associated with the internal state I $ / (a hyperfine structure 
sublevel) is achieved by applying fields .4 and B, which induce transitions between neighboring 
vibrational states corresponding to the electronic level I $ }, without changing the ion's internal 
state. Population of displaced states is measured by inducing a resonant exchange during a time 
t between states ] $, n) and I I", n + 1} with fields B and C (turning off field A). Probability 
of finding the atom in I $ } as a function of t, determined by exciting it to level d (with a high 
fluorescence yield), leads to information on population of displaced vibrational states. 
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neighboring vibrational states, when the internal state of the ion is I $ )- This is ac- 
complished by applying the two fields A and B illustrated in Fig. 5, with a fi-equency 
difference equal to the vibrational frequency w. Beam B is circularly polarized (or_), 
and does not couple I J" } to any virtual 2P1/2 state, so that  only the motional state 
correlated with ] $ ) is displaced. These fields do not lead to transitions between 
electronic levels of the trapped ion, since they are detuned with respect to the possi- 
ble electronic transitions, and therefore they affect only the center-of-mass motion. 
The action of the two fields can thus be modeled by an effective Hamiltonian of 
the form H o~ (0 + St), where 5, and 5,* are harmonic oscillator lowering and raising 
operators. The evolution operator corresponding to this Hamiltonian is precisely 
the displacement operator, therefore the Raman process induces a displacement of 
the original state in phase space. A resonant exchange between states I $}1 n} and 
I J'})t + 1} is then induced for a time t, with fields B and C (turning off field A). 
For each time t and each displacement c~ the population Pz(t, o) of the I $) state 
is measured. A fourth level b is used for detecting the electronic state of the ion 
(and also for Doppler preeooling): a pulse D resonant with the I $) ~ Ib} transition 
leads to a fluorescence signal if the ion is in I $), while the absence of fluorescence 
implies that the ion is in I J') (the detection efficiency for this process is close to 
100%). The internal state at t = 0 being always equal to I $), the signal aver- 

ec  O/ ' [1 + E~=0 Q~( ) cos(20.,~+¢)e-~'~], aged over many Ineasurements is P,(t, c~) = 
where f2~,~+~ are the oscillation frequencies, % their experimentally determined 

decay constants, and Q,~(o') = (nl/)t((~)~/)(o)ln) is the population distribution 
of the displaced state. The dependence of f~,,~+~ on n allows the determination 
of Q~(o~) from P,(t, oz) [29], and from Q~(e~) one determines the Wigner function 
through Eq. (66). 

It is clear that  both methods are highly indirect. It will be shown in the following 
however that  it is possible to conceive a much more direct method for measuring 
the Wigner function at any point in phase space, for either an electromagnetic field 
in a cavity or a trapped ion. 

IV T H E  A T O M - F I E L D  I N T E R A C T I O N  

IV.A The  interaction Hami l tonian  

We consider now the interaction of atoms and fields. We will be considering 
situations in which the atom is resonant or quasi-resonant with one of the modes 
of the electromagnetic field in a cavity. Under these conditions, it is possible to 
consider just two of the atomic states, and therefore reduce the atom to a two-level 
system (we will call e the upper level, and g the lower level). The basic Hamiltonian 
describing this system is 

H =H.44-HF4-HAF, (67) 

where 
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HA = (hW0/2)cr3 (68) 

is the free-atom Hamiltonian, with a3 a Pauli matrix: 

~3 = (10 0 1 ) ,  (69) 

H F = h w ( a t a + ½ )  (70) 

is the free-field Hamiltonian, and 

H A F  = hg(cr+a + a_at), 

with 

(71) 

= (° 0 ; ) .  
The real coupling constant hg depends on the transition dipole d~b between the 
two levels, on the polarization vec tor / ' and  the frequency w of the electromagnetic 
field, as well as the effective volume of the mode V. From (6), it follows that 

(73) hg = -dab. c~/%~(R), 

where the mode function u(/~) is evaluated on the center-of-mass position (/~) of 
the atom interacting with the field. One should note that,  since only two atomic 
states are involved, one may always choose their phases so that  g is real. If u(/~) 
is real, then this choice will not depend on/~. 

In Eq. (71), we neglected terms of the form a+a t and a_a, which do not con- 
serve energy in first order, and which lead to small corrections in the results to be 
obtained, as long as Iw - w01 << w0. 

The above equations define the Jaynes-Cummings model [31], a very useful model 
in Quantum Optics, and which has described with success many experiments in 
cavity QED. One should note that  this model neglects dissipative processes, which 
will be considered in a while. 

IV.B Heisenberg equations of motion for atom and 
semiclassical approximation 

From the above Hamiltonian, one gets the following equations of motion for the 
atomic operators: 

~+ = iwo~+ - igittOa , (74) 

~ = -2i9 (~+~- ~_~) .  (7s) 
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T h e  sermclassical approximation is o b t a i n e d  by" s e t t i n g / i .  --> a .  d t ---> a*,  whe re  

a a n d  a* a re  c -numb er s .  

A d o p t i n g  th i s  a p p r o x i m a t i o n ,  one  ge t s  for  t he  ave r age  va lues  of  t h e  a t o m i c  op-  

e r a to r s ,  a f t e r  a p p l y i n g  the  t r a n s f o r m a t i o n  a ~ a e x p ( - i w t ) ,  (,+ --+ ~+ e x p ( i w t ) :  

( ; -+}  i~{o-~ ) - , , :S{a- :~) ,  
{b:~) = -2~g ( 0 + >  - 0 - - > * ) ,  (r6) 

where  6 = Wo - w is the  d e t u n i n g  b e t w e e n  the  a t o m  a n d  the  field.  

IV.C Bloch equations 

If  one  r e w r i t e s  Eqs.  (76) in t e r m s  of  r'1 - (6~), r'e = (&2), a n d  ra - (~3), w i t h  
g a  ~ 1 7 2  =- (1"~ - i 1~ ) /2 ,  one  ge t s  t he  Bloch equations, which  can  be  w r i t t e n  as: 

dr ~ x ~, fir) 
dt 

where  F =  ( r l , r>ra)  a n d  ~ = (I~,I?,6). 
In t e r m s  of  the  a t o m i c  d e n s i t y  m a t r i x ,  

fiA = (Pee Peg~ 
P~ P99 ] ' 

one m a y  wr i te :  

r l  = Tr (d lp .~)  = p~g + pg~ = 2 Ne(&¢)  

"2 = Tr(ck2fi.4) = i(p~g - pg~) = 2L}m(pg~) 

ra = Tr(&~/3.4) = Pee - P~g 

~ g 

2R~ 21m{Pge 

(78) 
(79) 
(80) 

F I G U R E  6. Precession of the Bloch vector F around the pseudo-magnetic field ~, with l" real. 
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FIGURE 7. Dispersive limit: the Bloch vector precesses around the vertical axis. 

These equations represent the atomic state by a pseudo-spin F (Bloch vector), 
which precesses around the pseudo-magnetic field ~, as shown in Fig. 6. The 
precession frequency, given by 

fl = ~/lt,'l 2 + 52 , (81) 

is the Rabi frequency. The vertical component of the Bloch vector represents the 
atomic population, while the equatorial projection is associated with the atomic 
polarization (t3 in Fig. 6). This picture of the evolution of a two-level atom is due 
to Feynman, Vernon, and Hellwarth [32]. 

For a pure state, 1¢) = cele} + cg]g}, one has 

(Icel ~ C;Cg PA coc; Ic~l 2 J '  r~ + r~ + r~ = 1. 

Therefore, in this case the tip of the Bloch vector is situated on a sphere of unit 
radius. 

Two limiting cases of this expression correspond to the resonant and to the 
dispersive interaction. When the interaction is resonant, 5 = 0, ~ = (V1, 1/,2,0). 
and the Bloch vector precesses around a vector in the equatorial plane. One gets in 
this case maximum population transfer. The precession frequency is then IVt. In 

the dispersive limit, 15I >> IvI, and t~ -+ (0, 0, 5). The Bloch vector precesses then 
around a vector parallel to the axis 3 (population axis), with a frequency equal to 
5, as shown in Fig. 7. 

IV.D Quantum theory: the dressed atom 

We go back now to the Hamiltonian (67), and consider the effects resulting from 
the quantization of the electromagnetic field. 

The Hamiltonian (67) defines the dressed atom [33]. While H.4 has two energy 
levels, HF has an infinite number of discrete levels, given by ha~(n + 1/2), n = 
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F I G U R E  8. Energy level diagram for the uncoupled atom-field system 

0, 1, 2 . . . . .  The interaction HAF couples these levels, leading to a discrete structure 
of levels of the composed system, which one could call the :'atom-field molecule". 
We will study first the structure of the uncoupled system, and then we will analyze 
the energy levels of the coupled system. 

IV.D.1 Uncoupled states 

The state in which tile atom is in state e and the field has rz photons will be 
denoted by l< rz>. Analogously for 19, n). Let again 6 = co0 - ~, be the detunmg 
between the atom and the field. If 161 << coo, the states le, .r~> and lg, n + 1) will be 
very close to each other. If 6 > 0, the energy of the state tg, n + 1} will be smaller 
than the energy of the state le, n} (see Fig. 8). In fact, we can write 

h6 
E~,,, = hco(n + 1) + ~ - ,  (82) 

h6 
Eg,,,+~ = h~o(n + 1) 2 (83) 

We have therefore a sequence of subspaces g(n) =_ {tg,  n + 1); le, n)}. Note that 
E~,o = /'~(co + c~o)/2, and E~.o = - h 6 / 2  = h(cJ - ~o0)/2, consistently with the fact 
that  the zero-point energy is h ,~ /2  and the energies of the two atomic states are 
+h~o/2. 

IV.D.2 Coupled states 

Tile Hamiltonian (67), with HAF given by (71), couples only states within the 
same subspace (this is a consequence of the rotating-wave approximation; the 
counter-rotating terms, neglected in H.~,~, connect states belonging to different 
subspaces, which leads to small corrections to the results considered here, due to 
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I g ,  n+ t > ~  
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FIGURE 9. Energy displacement of levels, produced by the coupling. 

the large energy differences involved). Therefore, in order to calculate the eigen- 
values of the complete Hamiltonian, one has to diagonalize a 2 x 2 matrix, given 
in the subspace g(n) by: 

g,/h-~ ) { w ( n +  1 ) -  ~ (84) 
[H].=h\ gv~-S ~(n+l)+~ 

The eigenvalues of this matrix define the energy levels of the dressed atom: 

E±,,~ = (n + 1)hw + (h~ /2 ) ,  (85) 

G,o = h5/2, (86) 

where 

= [~(n + 1) + ~2j1/2, (87) 
is the quantum Rabi frequency of the system, while 120 = 29 is the vacuum Rabi 
frequency, which coincides with 12 when n = 0 and 6 = 0. The quantum Rabi 
frequency (87) coincides precisely with the classical expression (81) if one identifies 
120v/n + 1 with IV[. One should note however that,  contrary to the classical ex- 
pression, the quantum Rabi frequency remains different from zero even when the 
number of photons in the mode is equal to zero. The remaining contribution is 
associated with spontaneous emission into the mode, which couples the state le, 0} 
to the state Ig, 1). 

The expression (85) shows that the two states are separated by the coupling, the 
energy difference between them going from h5 to hVt. This effect is displayed in 
Fig. 9. 

The corresponding eigenstates are given by: 

I+, n} = sin O[g, n + 1} + cos Ole, n}, (88) 

I- ,  n) = cos Olg, n + 1) - sill Ole, n}, (89) 

with 

5 
cot 2 0 -  f ~ o v / n + l ,  0 _ < 2 0 < 7 r .  (90) 
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IV.D.3 Resonant interaction 

At resonance. 5 = 0, and theretore 0 = ~/4, so that  

1 
1+,,-4 = ~ (19,, + l) + le,,~)), (91) 

1 
I- ,  ~) = ~ (Ig, ,~ + l)  - I ~ ,  ,4)  • (9'~) 

In this case. each subspace g(n)  becomes two-fold degenerate, and the dressed 
states are expressed in terms of the sum and the difference of the corresponding 
uncoupled states, with equal weights. The corresponding energies are, for n ¢ 0, 

E±,,, = (n + 1)hw ± (hf~0v/-~-~ 1/2). (93) 

IV.D.~ Dispersive interaction 

For large detunmg (151 >> l)-0,/n + 1), one gets 0 --> 7r/2 if 5 < 0 , and 0 --+ 0 if 
5 > 0, and therefore 

I+. ,4 -~ Fg, ~ + 1). E-.,~) -~ f e , , ) ,  (~ < 0),  (9~1) 
I + -~) ~ t~-,4,  l - ,  n) -+ Ig, n + 1), (5 > 0). (95) 

These equations show that, for a dispersive interaction, the coupled states approach 
the uncoupled states, with an energy shift obtained from (85): 

E±,,  ~ ('n + 1)hw ± (h~/2)151 ± h,~ff(, + 1)/4151. (96) 

In any case, we have in this limit: 

(97) 

(98) 

The two energy levels of each subspace get displaced in opposite directions. This 
displacements coincide precisely with those which would be obtained using second- 
order perturbation theory, and constitute the Stark effect. 

I V . E  D y n a m i c s  o f  t h e  interact ion 

Once the Hamilt.onian is diagonalized, one call easily describe the dynamical 
behavior of the system. From (88), one has: 

le. n) = cos 01+, n) - sin 0 I - ,  n) ,  (99) 

[q. n + 1) = sin01÷,n) + cos01-, n) ,  (100) 
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and therefore, if the initial state of the system is I~(0)) = le, n}, we will have at 
time t: 

= cos Oe -iE+,'~t/r~ I +, n} - sin oe-iE-,'~t/hl- , ~'l), (101) 

or yet, reexpressing in terms of the uncoupled states: 

I¢(t)) = e-i~°(~+l)t{ - isin (20)sin ( a t / 2 ) l g ,  + 1) 

+ [cos(~t/2) - i cos(20) sin (f2t/2)] le, n}}. (102) 

The probabilities of finding the system in the states te, n) e Ig, n + 1} are given 
therefore by 

Pe,~ = cos2(Qt/2)+ cos2(20)sinZ(f~t/2), (103) 

Pg,~+l = sin2(20) sin2(f~t/2), (104) 

oscillating therefore with the Rabi frequency f~. At resonance, when 0 = 7r/4, 
one gets P,,~ = cos2(f~t/2), Po,~+l = sin2(flt/2), so the oscillation has maximum 
amplitude. 

These considerations extend to the quantum case the description of the atomic 
evolution in terms of the Bloch vector, previously discussed within the semiclassi- 
cal approximation. One should note that, if one starts from the state ]e, n}, the 
quantum system evolves even when the number of photons in the mode is equal 
to zero, contrary to what would happen if the field is not quantized. This extra 
quantum feature is again due to spontaneous emission by the atomic excited state 
into the cavity mode. 

One should also note that,  in the dispersive limit, neither the number of photons 
nor the populations of states e and 9 change, exactly as in the semiclassical treat- 
ment. In this case, the dynamics of the atom is well represented by the precession of 
the Bloch vector around the vertical axis (population axis): if there are n photons 
in the field, the angle of precession is given by (AEe,~ - AEg,~)t /h,  with the Stark 
energy displacements given by (97). 

V C O H E R E N T  S U P E R P O S I T I O N S  OF M E S O S C O P I C  
STATES IN CAVITY QED 

V.A Building the coherent superposit ion 

We show now how, by careflllly tailoring the interactions between two-level atoms 
and one mode of the electromagnetic field in a cavity, one can produce quantum 
superpositions of distinguishable coherent states of the field, thus mimicking the 
superposition of two classically distinct states of a pointer. 

The method, proposed in Ref. [30], and sketched in Fig. 10, involves a beam of 
circular Rydberg atoms [34] crossing a high-Q cavity in which a coherent state is 
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FIGURE 10. Experimental arrangement for producing and measuring a coherent superposition 
of two coherent states of the field in cavity C. 

previously injected (this is accomplished by coupling the cavity to a classical source 
- a microwave generator through a wave guide). The utilization of circular levels is 
due to their strong coupling to microwaves and their very long radiative decay times, 
which makes them ideally suited for preparing and detecting long-lived correlations 
between atom and field states [35]. On either side of the high-Q cavity there are 
two low-Q cavities (R1 and R2), which remain coupled to a microwave generator. 
The fields in these two cavities can be considered as classical. This set of two low-Q 
cavities constitutes the usual experimental arrangement in the Ramsey method of 
interferometry [35,36]. Two of the atomic levels, which we denote by [e} and ]g), 
are resonant with the microwave fields in cavities R1 and R2, the intensity of these 
fields being such that,  for the selected atomic velocity, effectively a 7r/2 pulse is 
applied to the atom as it crosses those cavities. For a properly chosen phase of 
the microwave field, this pulse transforms the state le) into the linear combination 
(le) + [g})/v~, and the state tg} into (-[e) + [g))/v"2. 

Therefore, if each atom is prepared in the state le} just prior to crossing the 
system, after leaving Rx the atom is in a superposition of two circular Rydberg 
states ]e) and ]g): 

[~P~tom} : ---~([e} + Ig>)- (105) 

On the other hand, the superconducting cavity is assumed not to be in resonance 
with any of the transitions originating from those two atomic states. This means 
that the atom does not suffer a transition, and does not emit or absorb photons 
from the field. This property is further enhanced by the fact that  the cavity mode 
is such that  the field slowly rises and decreases along the atomic trajectory, so 
that, for sufficiently slow atoms, the atom-field coupling is adiabatic. However, the 
cavity is tuned in such a way that  it is much closer to resonance with respect to 
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FIGURE 11. Atomic level scheme. The transition i ~ e is detuned by fi from the frequency ~z 
of a mode of cavity C, while the transition e ++ g is resonant with the fields in R1 and R2. State 
Ig) is not affected by the field in C. 

one of those transitions, say the one connecting le} to some intermediate state li}. 
The relevant level scheme is illustrated in Fig. 11. This implies that,  if the atom 
crosses the cavity in state le}: dispersive effects can induce an appreciable phase 
shift on the field in the cavity. The phase shift is negligible, however, if the atom 
is in state Ig). For a principal quantum number equal to 50 in the state e, and the 
cavity tuned close to the 50 --~ 51 circular to circular transition (around 50 GHz), 
a phase shift of the order of ~ is produced by an atom crossing the centimeter size 
cavity with a velocity of about 100 m/s [30]. 

After the atom has crossed the cavity, in a time short compared to the field 
relaxation time and also to the atomic radiative damping time, the state of the 
combined atom-field system can be written as 

1 

Vz 

assuming that  the phase shift is ~ if the atom is in the excited state. The entangle- 
ment between the field and atomic states is analogous to the correlated two-particle 
states in the Einstein-Podolski-Rosen (EPR) paradox [37-39], and is a realization 
of the Von Neumann entangled state (1). The two possible atomic states e and 
g are here correlated to the two field states I - (~} and I(~), respectively, which 
may be considered as macroscopic pointers (if lat >> 1). After the atoms leave 
the superconducting cavity, one can detect them in the e or g states, by sending 
them through two ionization chambers, the first one having a field smaller than 
the second, so that  it ionizes the atom in the e state, but not in the g state, while 
the second ionizes the atoms which remain in state g (Fig. 10). This measurement 
projects the field in the cavity either in the [c~) (if the atom is detected in state g), 
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or in the f - c~} state (if the atom is detected in state e). However, as in an EPR 
experiment [39], one may choose to make another kind of measurement, letting the 
atom cross, after it leaves the superconducting cavity, a second classical microwave 
field (Re in Fig. 10), which amounts to applying to the atom another rr/2 pulse. 
The state (106) gets transformed then into 

1 IW'~,o~+~o~d) -- ~ (1~ : -o )  - l e ;  ~*) + to;~) + I ,q ; -o))  • (lO7) 

If one detects now the atom in the state ]g} or le}, the field is projected onto the 
state 

1 eie, ~ (lOS) 

where N1 = ~/2 [1 + cos t~l exp(-21c~121)] and g,~ = 0 or 7:, according to whether 
the detected state is g or e, respectively. One produces therefore a coherent super- 
position of two coherent states, with phases differing by re. For lal 2 >> 1. this is a 
"SchrSdinger cat" state. 

Superpositions of coherent states of the field were produced in the experiment 
reported in Ref. [40], and were detected bv a procedure which can be considered, as 
shown in the next Section, as a special case of a method for measuring the Wigner 
function of the field in the cavity. 

V . B  E f f e c t  o f  d i s s i p a t i o n  

Before considering how these states can be detected, we discuss tile effect of 
dissipation, due to imperfections in the mirrors and diffraction losses. A simple 
model for dissipation is obtained by coupling the field oscillator (of frequency a~) 
to a bath of harmonic oscillators, which represent the modes of the reservoir. We 
consider here for simplicity a rotating-wave Hamiltonian, and a zero-temperature 
bath. The method here exposed, and which results from joint work of the author 
with V. M. Kenkre, can be easily generalized to account for a finite-temperature 
bath [41]. The corresponding Hamiltonian may be written as 

* t H = hwata + E hwob~bq + h E (Gqatbq + Gqabq), (109) 
q q 

where G o are the coupling constants, and the bath oscillators have frequency CJq. 
It is straightforward to write down the evolution equation for the Heisenberg 

operators a (t), bq (t), and their adjoints. Since the resulting equations are linear, 
they may be solved by the Laplace transform method. 

The explicit solution for o (t) is given by 

(t) = o, (o)~ (t) + ~ ~ (~) b~ (0). (110) 
q 
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The Laplace transforms of the c-number functions { (t) and rlq (t) appearing in (110) 
are given respectively by 

~(s) = [ s + i w + ¢ ( s ) ]  -1 , (111) 

= -ia  (s + i ,q) -1 Is + + -1 . (112) 

The function ¢ which appears in both (111) and (112) reflects the nature of the 
coupling and is given in the time domain by 

¢ (t) = ~ IGq] 2 e -i~qt = f0 ~ d ,  6 ( , )  e -~'t • (113) 
q 

In the second equality in (113) we have introduced the quantity G (~) which equals 
the product of the coupling ]Gql 2 assumed to be a function of the frequency alone, 
and the density of states ~q 5 (~ - ~q) of the b-oscillators. 

Since the total number of oscillator excitations in both oscillators, a~a + ~q  b~bq, 
commutes with the Hamiltonian and is therefore an invariant, it follows that 

t~(t)l 2 + ~ ]~q (t)l 2 = 1. (114) 
q 

In order to get now the time-dependent Wigner function, it suffices to replace the 
solution (110) in the characteristic function (48), and then calculate the Wigner 
function through (49). Assuming that the initial state of the field in the cavity is 
given by (61), one gets then: 

2 { + + 2 F ( t ) }  , (115) I¥ (a, OF, t) = - ~  e -2]a-~(t)a°b" e -2[~+~(t)a°12 

where the normalization factor Af is given by (62). Here, the fringe function F (t) 
is given by 

F ( t ) = e x p { - 2 [ l a o l e ( 1 - ] ~ ( t ) 1 2 ) + l a [ 2 ] } c o s t 4 a o I m [ a ~ * ( t ) ] }  . (116) 

The Markoffian limit corresponds to setting ¢ (t) = F5 (t), which implies that 

(t) = e-iate -rt  . (117) 

More generally, one could have a frequency shift as well, in the Markoffian limit, 
arising from the fact that  the integration in (113) is from zero to infinity. It is clear 
then from (116) and (117) that,  for Ft << 1, the fringe function decays very fast, in a 
time scale of the order of 1/2[a012F. This shows explicitly that  the term associated 
with coherence decays at a much faster rate than the energy of the system, if 
]a0[ 2 >> 1. As the distance between the two coherent states increases~ this effect 
becomes more and more pronounced, and the coherent superposition of the two 
"pointers" becomes practically indistinguishable from a statistical mixture: this is 
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the reason why such coherent superpositions are extremely difficult to observe in 
the macroscopic world! The physical origin of the decoherence process is actually 
very simple: as the field in the cavity leaks into the external reservoir, the states 
of the field get correlated with states of the reservoir which become approximately 
orthogonal after the time it takes for one photon to leave the cavity, thus implying 
the disappearance of interference effects between the two internal states. This can 
be clearly seen, if one assumes that  the decoherence time depends only on the 
distance between the two states in phase space, upon displacing the initial state in 
the cavity by a0, so that  the state I'g"} = (1/jV')[12c*0} + 10}] is obtained (which has 
the same distance between the two states of the superposition as the original state). 
For the state 12c~0), a photon leaves the cavity in a time of the order of (1/41c~012F), 
while for the state t0} no photon leaves the cavity. Since the probability for finding 
the system in each of these states is 1/2 for I~01 >> 1, it follows that  the effective 
lifetime of a photon is (1/21c~012F), which is precisely the decoherence time: after 
this time, the state 12a0} becomes correlated with a state of tile reservoir containing 
approximately one photon, while the state 10) remains correlated with the vacuum. 
Decoherence of the system under observation is therefore closely connected with 
entanglement between this system and the reservoir. 

VI D I R E C T  M E A S U R E M E N T  OF T H E  W I G N E R  
F U N C T I O N  

Once the proper state of the field is produced in the cavity, how would one be 
able to measure it? As shown in [42], it is actually possible to measure the \¥igner 
function of the field by a relatively simple scheme, which provides directly the value 
of the Wigner function at any point of phase space. This is in contrast with the 
tonmgraphic procedure, or the method based on the measurement of populations 
adopted at NIST. which yield the Wigner function only after some integration 
or summation. Furthermore. and also in contrast with those methods, the present 
scheme is not sensitive to detection efficiency, as long as one atom is detected within 
a time shorter than the decoherence time. A similar procedure can be applied to the 
reconstruction of the vibrational state of a t rapped ion [42], and also in some cases 
to molecules [43]. We will discuss here only the application to the electromagnetic 
field. 

The basic experimental scheme for measuring the Wigner function [42] coincides 
with the one used to produce the "SchrSdinger cat"-like state, illustrated in Fig. 
10. A high-Q superconducting cavity C is placed between two low-Q cavities 
(R1 and R2 in Fig. 10). The cavities RI  and R2 are connected to the same 
microwave generator, the field in R~ being dephased by r/with respect to the field 
in R , .  Another nficrowave source is connected to C, allowing the injection of 
a coherent state in this cavity, so that the density operator /5 of the field to be 
measured is transformed into J = D(z ,  z* ) / sD- i ( z ,  z*) . This system is crossed bv 
a velocity-selected atomic beam, such that an atomic transition e ++ g is resonant 
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with the fields in R1 and R2, while another transition e ++ i is quasi-resonant 
(detuning 5) with the field in C, so that  the atom interacts dispersively with this 
field if it is in state e, while no interaction takes place in C if the atom is in 
state g. The relevant level scheme is shown in Fig. 11. Just before R1, the atoms 
are promoted to the highly excited circular Rydberg state te} (typical principal 
quantum numbers of the order of 50, corresponding to lifetimes of the order of 
some milliseconds). As each atom crosses the low-Q cavities, it sees a :r/2 pulse, 
so that  le} --> [le} + exp(irl)lg)]/v/2, and Ig} -+ [-exp(-ir /)[e} + Ig}]/x/~, with 
r/ = 0 in R1. If the atom is in state e when crossing C, there is an energy shift 
of the atom-field system (Stark shift), which dephases the field, after an effective 
interaction time ti,t between the atom and the cavity mode. The one-photon phase 
shift is given by ¢ = (f~2/~)ti~t, where the Rabi frequency f~ measures the coupling 
between the atom and the cavity mode. The atom is detected and the experiment is 
repeated many times, for each amplitude and phase of the injected field z, starting 
from the same initial state of the field ,5. In this way, the probabilities Pe and P9 
of detecting the probe atom in states e or g are determined. It is easy to show that  

Pg 

Setting ~? = 0 and ¢ = :r, we can see from (50) that  

- Po = (119) 

Therefore, the difference between the two probabilities yields a direct measurement 
of the Wigner function (one should note that, due to the fact that  here Ig> does 
not interact with the field in C, this expression differs from the one given in Ref. 
[421). 

An important feature of this scheme is the insensitivity to the detection efficiency 
of the atomic counters (of the order of 40-t-15% in recent experiments [30]). Indeed, 
if an atom is not detected after interacting with the cavity mode, the next atom will 
find a field described by the reduced density operator obtained from the entangled 
atom-field density matrix by tracing out the atomic states: t5' -+ /5" = -~(/5' + 

2 

~lh '~t) ,  where ~ ( 0 )  = exp(i¢&tfi) is the phase shift operator associated with level 
e. The value o f P g - P ~  for this second atom is then easily shown to reduce to (119). 

The measurement accuracy does depend however on the detector's selectivity, 
that  is, the ability to distinguish between the two atomic states. Another possible 
source of error is the velocity spread of the atomic beam, which would produce an 
uncertainty in the angle ¢ and in the angles of rotation in R1 and R2. For a 1% 
velocity spread and for average photon numbers of the order of 10, one can show 
that  the distortion is at most equal to 0.04, in the relevant region of phase space, 
so that  the measured distribution is practically undistinguishable from the true 
one. In fact, the insensitivity of the proposed scheme to the detection efficiency 
allows a passive selection of atomic velocity (only the atom which goes through the 
detectors at the right time after excitation is detected), which can be made with 
high precision. 
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One should note that  this method allows the measurement of the Wigner function 
at each time t, allowing therefore the monitoring of the decoherence process "in real 
time". It is interesting, in this respect, to compare the procedure described above 
with the one suggested by Davidovich et al [44], with the objective of observing 
the decoherence of a Schr6dinger cat-like state. In that  reference, it was proposed 
that  the decoherence of the state I±) = (Io') ± ] - a ) ) / N ±  could be observed by 
measuring the joint probability of detecting in states le) or Ig) a pair of atoms, 
both prepared in the state le} initially, and sent through the system depicted in 
Fig. 10. The atomic configuration considered in that  reference coincides with the 
one adopted here. Detection of the first atom prepares the coherent superposition 
of coherent states, as described above. Detection of the second atom probes the 
state produced in C. Since no field was injected into the cavity between the two 
atoms, it is clear now that  the experiment proposed in Ref. [44] amounts to a 
measurement of the Wigner function at the origin, which is non zero for the pure 
state I+), as shown in Fig. 4 (c), vanishes after the decoherence time (shorter than 
the intensity decay time by the factor la12), as shown in Fig. 4 (d), and increases 
again as dissipation takes place, bringing the field to the vacuum state. Following 
this proposal, the first observation of decoherence was realized by Brune et al [.30]. 
In the experiment, both le) and 19) lead to dephasings (in opposite directions) of 
the field in C. In this case. it is easy to show that  the Wigner function is again 
recovered, as long as the one-photon phase shift is ¢~ = 7r/2 (with opposite signs 
for e and g), and a dephasing 71 = ~/2 is applied to the second Ramsey zone [42]. 
This condition was not satisfied however in the experiment reported in Ref. [30]: 
due to experimental limitations, the angle 0 was actually smaller than 7r/2. 

One is led thereibre to a natural question: can the Wigner function (~ = 7r) be 
inferred from that  measurement? This question can be answered by using the fact 
that the Wigner function belongs to a general class of phase-space distributions, 
parameterized by a complex parameter s, and which can be written as [20]: 

J 
' * * c  '~ ' 

(12o) 

Note that  W(z, z*, s) is real when s is real. For s = 0, one obtains the Wigner 
distribution, while s = -1  and s = 1 correspond respectively to the Q and the 
Glauber-Sudarshan P representations [20]. Setting s = - / c o t  0/2, (120) becomes 
[42]: 

IV(z, z*, O) = - 2iei°/'2 sin °Tr  [Z)(- z , - z * ) ~ D ( z ,  g*)e:i~fita] . (121) 

For 0 = ~ (s = 0). we recover Eq. (50). 
If the phase shift is different from 7r, one can see from (118) that  by changing 

z 1 one may detect the real and the imaginary part of IV(z, z*, ¢~), given by (121). 
Therefore, one can measure phase space representations corresponding to imaginary 
values of u. The connection between W(z. z*. 6) and W(z, z*) = W(z, z*, 7c) can 
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be obtained in the following way. It is easy to show from (120) that,  setting 7- = is  

and z = x + iy,  

O W ( x , y , v )  1 ( 0 2  02 ) 
i OT - 8 0 x  2 + Oy 2 W(x,y ,  7) ,  (122) 

so that  W(x, y, T) obeys a free-particle SehrSdinger equation, the parameter  ~- play- 
ing the role of a time. As ¢ changes from 27r to 0, ~- changes correspondingly from 
7- = - c o  to ~- = oc. The behavior of the real part  of W(x,  y, 0) as ¢ changes, for 
the state ] - ) ,  is illustrated by Fig. 12. This behavior is easily understandable in 
terms of the development in time of a free wavepacket. In particular, the vanishing 
of W ( z ,  ¢) when ¢ = 0 (and therefore ~- = ec) may be seen as a direct consequence 
of the wavepacket spreading. The interference fringes at the origin, displayed when 
¢ = 7r ( r  = 0), may be thought as resulting from the collision of the two wavepack- 
ets counter-propagating along the z axis and meeting at the origin of the phase 
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F I G U R E  12. Generalized phase-space  dis t r ibut ion for the  s ta te  (]ao) + ] - a0)) /x /~ ,  wi th  

taol 2 = 5. The change of the one-photon phase shift ~ from ~ to 0 is equivalent to the time 
evolution of a wavepacket in phase space from 7 = 0 to 7 = oc. (a) 0 = 7r, corresponding to the 
(real) Wigner distribution (initial wavepacket); (b) Real part of W(a, 0 = 7r/2). 
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space. Equation (122) also implies that W(z ,  y, T) is connected to W(z, y) through 
the free-particle propagator. Therefore, the reconstruction of the Wigner function 
fl'om l¥(z, z*, ~ ¢ ~r) is possible through an integral transform involving that prop- 
agator, but would require the knowledge of this generalized distribution for every 
value of the complex number z. 

VII C O N C L U S I O N  

In these lectures, I intended to show that techniques used in the field of quantum 
optics are helpful to discuss the quantmn-classical transition, and in particular al- 
low the monitoring of the decoherence process, which is at the heart of the quantum 
theory of measurement. This does not mean that the prol)lem of the classical limit 
has been solved. Indeed, one has looked only at the dynamics of linear systems 
(the field mode coupled to the reservoir oscillators), and therefore we have not 
discussed the difficult problems related to the classical limit of non-linear systems, 
where chaotic behavior inay play an important role [45]. Furthermore, coherence 
does not really disappear, and it is still present in entangled states of the cavity field 
and the rest of the Universe. This fact immediately leads us to the question about 
the meaning of the wave flmction of the Universe, and to the seemingly paradoxi- 
cal application of probability concepts to a Universe which is unique. According to 
Murray Gell-Man and Jim Hartle. "quantum mechanics is better and more funda- 
mentally understood within the context of quantum cosmology" [46]. Even though 
fundamental problems related to the classical limit of quantum mechanics and the 
quantum theory of measurement remain to be solved, I think it is fair to say that 
quantum optics has helped us to understand and observe an important piece of this 
puzzle. 
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