SEMINARIO DE OPERADORES Y FÍSICA-MATEMÁTICA

Organizers: Doctors: Rafael del Río, Luis O. Silva and Ricardo Weder

A MATHEMATICAL STUDY OF MODELS FOR DISLOCATION MOTION

Dr. Thomas Hudson University of Warwick

Abstract

Dislocations are topological line defects found in crystals, and their motion governs the plastic properties of such materials. Due to the long-range stress fields they induce, their collective behaviour is highly complex. Understanding this behaviour (and thus obtaining improved predictive models of plasticity) remains a major challenge in Materials Science. A popular simulation technique used by Materials Scientists to answer questions in this direction is Discrete Dislocation Dynamics (DDD): this involves evolving dislocation lines according the stress field in the crystal in order to extract macroscopic properties. This talk presents a series of mathematical results concerning the rigorous justification of DDD from a microscopic model, as well as ongoing work concerning the convergence of numerical algorithms used to simulate DDD.

22 de junio de 2017

 \diamond

BOUNDARY HILBERT SPACES AND QUANTISATION OF FIELD-PARTICLE COMPOSITE SYSTEMS Dr. Benito Alberto Juárez Aubry Instituto de Ciencias Nucleares, UNAM

Abstract

We show how to associate natural boundary Hilbert spaces to the quantisation of classical systems in bounded regions that can be understood as composite boundary-bulk systems. As an example, we will show in detail how one can Fock quantise a linear field-particle interacting system consisting of a string with two point masses attached at the ends. We shall see that, although the quantised system cannot be immediately decomposed as a tensor product of 'masses' and 'string' Hilbert spaces, there is a natural Hilbert space that can be associated to the boundary with the aid of so-called trace operators from PDE theory.

5 de diciembre de 2017