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Separation of scales plays a fundamental role in the understanding of the
dynamical behavior of complex systems in physics and other natural sciences.
It is often possible to derive simple laws for certain slow variables from the
underlying fast dynamics whenever the scales are well separated. The proto-
typic example are molecules, i.e. systems consisting of two types of particles
with very different masses. Electrons are lighter than nuclei by at least a
factor of 2 ·103, depending on the type of nucleus. Therefore, assuming equal
distribution of kinetic energies inside a molecule, the electrons are moving
at least 50 times faster than the nuclei. The effective dynamics for the slow
degrees of freedom, i.e. for the nuclei, is known as the Born-Oppenheimer ap-
proximation and it is of extraordinary importance for understanding molec-
ular dynamics. Roughly speaking, in the Born-Oppenheimer approximation
the nuclei evolve in an effective potential generated by one energy level of
the electrons, while the state of the electrons instantaneously adjusts to an
eigenstate corresponding to the momentary configuration of the nuclei. The
phenomenon that fast degrees of freedom become slaved by slow degrees of
freedom which in turn evolve autonomously is called adiabatic decoupling.

In this series of lectures I will give an overview of different aspects and
applications of adiabatic perturbation theory for quantum systems, focussing
on recent developments. One aim is to illustrate the various very different
realizations of adiabatic decoupling in physics and to explain their common
mathematical structure.

Lecture 1: The classical time-adiabatic theorem
The classic adiabatic theorem of quantum mechanics going back to Born
and Fock and to Kato (see [Te2] for references) is concerned with quantum
systems whose Hamiltonian depends explicitly and slowly on time. This the-
orem has a number of mathematical generalizations and an important aspect
are geometric (or Berry) phases. As a nontrivial recent physical application I
will discuss the Piezo effect in crystalline solids, where the slow deformation
of a periodic potential gives rise to a geometric current [PSpT].
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Lecture 2: Space adiabatic perturbation theory
In most interesting systems showing a separation of scales the Hamiltonian
is time-independent. Instead, the slow variation of some degrees of freedom
is of dynamical origin, e.g. because of their large masses or because of slowly
varying external potentials. In a suitable representation the Hamiltonian of
such a system has the form of an pseudo-differential operator with an oper-
ator valued symbol. There is a general mathematical formalism for proving
adiabatic decoupling for systems guided by Hamiltonians of that form called
adiabatic perturbation theory, c.f. [MaSo, NeSo, PST, Te2].

In this lecture I will explain the general formalism of space adiabatic
perturbation theory leading to effective Hamiltonians for the slow degrees of
freedoms in such systems. The perturbation parameter ε � 1 is a dimension-
less ratio of two temporal or spatial scales. As a technically simple example,
but having all the interesting structure, I discuss the semiclassical limit of
the Dirac equation [PST].

Lecture 3: Constrained quantum systems
As a rather recent and highly nontrivial application I discuss strongly con-
fined quantum systems and the limit of holonomic constraints to subman-
ifolds. Adiabatic perturbation theory allows to extend results of the type
[FrHe] to the regime of large tangential kinetic energies, where the effective
equations for the constraint system have a much richer structure [TeWa].

Lecture 4: Exponential estimates and non-adiabatic transition his-
tories
The adiabatic approximations discussed until now ignore non-adiabatic tran-
sitions between almost invariant subspaces. Under suitable analyticity as-
sumptions these transitions are of order exp(−c/ε) for some c > 0 and thus
do not appear in any order of perturbation theory in ε. However, the tran-
sitions have important physical consequences and it is an interesting task to
go beyond all orders of perturbation theory and to quantify them. This leads
to so called Landau-Zener formulas. In this lecture I present the traditional
approach [JoPf] and a more recent approach [BeTe] on Landau Zener formu-
las and non-adiabatic transition histories.

Lecture 5: Extensions: adiabatic decoupling for systems without
spectral gap or complex eigenvalues
In all situations discussed up to now a crucial ingredient for applying adia-
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batic perturbation theory was a uniform spectral gap. In this lecture I discuss
adiabatic theorems and applications where this condition is violated. This
violation comes in two flavors: as eigenvalues at the bottom of continuous
spectrum [AvEl, Te1] or as resonances, i.e. complex eigenvalues after suitable
analytic deformations [AbFr]. As an application I discuss the derivation of
quantum mechanics from a model of non-relativistic QED [TeTe].

In all lectures I will assume familiarity with basic mathematical concepts
in quantum mechanics. More advanced concepts like pseudo-differential op-
erators with operator valued symbols and the corresponding calculus are
introduced along the way.
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