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Inverse Scattering in Quantum Mechanics

The inverse scattering problems in quantum mechanics have been exten-
sively studied since the pioneering work of W. Heisenberg in the theory of
the scattering matrix in 1943 and 1944. In these lectures we will discuss
the multi-dimensional case, where we do not assume that the potentials are
spherically symmetric. In general terms, they can be described as the prob-
lems of obtaining information about the inter-particle interaction potentials
of an N-body system from the scattering operator. In a more precise sense,
there are three main problems. Uniqueness: to prove that the scattering op-
erator uniquely determines the potentials. Reconstruction: to give methods
to reconstruct the potentials from the scattering operator. Characterization:
to give necessary and sufficient conditions in order that an operator is the
scattering operator of unique inter-particle potentials in a given class. There
are different ways to give the scattering data. For example, one can give the
scattering operator for all energies, the high-energy limit of the scattering
operator, or the scattering operator for a fixed energy. Inverse scattering has
many important applications in physics. In particular, in atomic molecular
and nuclear physics a great deal of the information about the inter-particle
potentials is obtained from scattering experiments. Moreover, there is also
the closely related problem of inverse scattering of acoustic, electromagnetic
and elastic waves, that has many technological applications, for example in
tomography. Many of the results have been obtained using stationary meth-
ods. For general references on this point of view, see [1, 6, 7, 8, 9].

In these lectures I will discuss a new geometrical time-dependent method
that has been introduced in [2, 3, 4]. We consider scattering of finite-energy
wave packets, what allows us to use in the proofs the time propagation aspects
of scattering. This makes the physical interpretation of the inversion methods
transparent, and it is furthermore technically useful, for example, for N-body
systems. Moreover, it allows us to consider more general classes of potentials
with singularities.

The lectures will be organized as follows. We will first introduce the
method in the simple case of two-body scattering by a short-range potential.
Then, we will consider the case of N-body systems with long-range potentials.
We will also briefly discuss the application of the method to other inverse
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scattering problems, like scattering by magnetic fields, the Aharonov-Bohm
effect, the Stark effect, and the non-linear Schroedinger and Klein-Gordon
equations. References for the material that we will discuss are [2, 3, 4, 5, 10,
11, 12, 13, 14, 15, 16, 17, 18].
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