Generalized principal eigenvalues and global survival of branching Markov processes

junio 11 @ 5:00 pm - 7:00 pm
Cargando Eventos
Seminario de Probabilidad y Procesos Estocásticos

Resumen

This talk is based on an article written with Oliver Tough. We study necessary and sufficient criteria for global survival of discrete or continuous-time branching Markov processes.
We relate these to several definitions of generalized principle eigenvalues for elliptic operators due to Berestycki and Rossi. In doing so, we extend these notions to fairly general semigroups of linear positive operators. We use this relation to prove new results about the generalized principle eigenvalues, as well as about uniqueness and non-uniqueness of stationary solutions of a generalized FKPP equation.
The probabilistic approach through branching processes gives rise to relatively simple and transparent proofs under much more general assumptions, as well as constructions of (counter-)examples to certain conjectures.

Ponente

Pascal Maillard

Institut de Mathématiques de Toulouse

Informes

seminarioproba@matem.unam.mx

Detalles

Fecha:
junio 11
Hora:
5:00 pm - 7:00 pm
Categoría del Evento:
Evento etiquetas:
, ,

Organizador

Departamento de Probabilidad y Estadistica

Lugar

Auditorio Alfonso Nápoles Gándara, Instituto de Matemáticas