A splitting eigenvalue method for Schrödinger operators on a tadpole graph

septiembre 5 @ 12:00 pm - 1:00 pm
Cargando Eventos
  • Este evento ha pasado.
Coloquio de Matemáticas Aplicadas

Resumen

The aim of this lecturer is to present new spectral tools for studying the orbital stability of standing wave solutions for the nonlinear Schrödinger equation (NLS) with power nonlinearity on a tadpole graph, a graph consisting of a ring and a half-line attached at a single vertex. By considering a δ-interaction type boundary condition at the junction of the graph, we study the stability properties of positive two-lobe state profiles for every positive power nonlinearity. Our arguments are based in a new splitting eigenvalue method for Schrödinger operators on a tadpole graph, as well as, in the extension theory of Krein & von Neumann for symmetric operators and in the oscillation theory for real coupled selfadjoint boundary conditions. As application of the period function for second-order differential equations and our study, we establish the existence and stability of positive two-lobe state of the cubic NLS. Our work extends to looping edge graphs, a graph consisting of a ring attached to many half-lines at one vertex.

 

Imparte

Dr. Jaime Angulo Pava

Institute of Mathematics and Statistics,

University of S.o Paulo

Registo previo 

luis.lopez@aries.iimas.unam.mx

calleja@mym.iimas.unam.mx

Zoom: https://shorturl.at/Cv0GO

Detalles

Fecha:
septiembre 5
Hora:
12:00 pm - 1:00 pm

Organizador

Departamento de Matematicas y Mecánica

Lugar

Salón 13, Edificio C del IIMAS